

Welcome to PursuedPyBear’s documentation!

PursuedPyBear, also known as ppb, exists to be an educational resource. Most
obviously used to teach computer science, it can be a useful tool for any topic
that a simulation can be helpful.

A Game Engine

At its core, ppb provides a number of features that make it perfect
for video games. The GameEngine itself provides a pluggable
subsystem architecture where adding new features is as simple as
subclassing and extending System. Additionally, it contains a state
stack of Scenes simple containers that let you organize game scenes
and UI screens in a simple way.

The entire system uses an event system which is as extensible as the
rest of the system. Register new values to existing event types, and
even overwrite the defaults. Adding a new event system is as simple as
calling Engine.signal with a new datatype. Instead of a publisher
system the engine knows everything in its own scope and only calls
objects with appropriate callbacks. The most basic event is Update
and your handlers should match the signature
on_update(self, update_event, signal).

Guiding Principles

Because ppb started to be a game framework great for learning with,
the project has a few longterm goals:

Education Friendly

Non-technical educators should feel comfortable after very little
training. While some programming knowledge is required, the ability to
think in objects and responses to events allows educators to only focus
on their lessons.

Idiomatic Python

A project built on ppb should look like idiomatic Python. It also
should look like modern Python. As such, we often add new language
features as soon as they’re available, letting a new user always know
ppb runs on the latest Python.

Object Oriented and Event Driven

ppb games are built out of instances of objects. Each object only has
enough information to respond to the event provided, which always includes the
current BaseScene. Because ppb doesn’t have a master list of events,
you can provide new ones simply to add more granular control over your game.

Hardware Library Agnostic

Because ppb strongly tries to be extensible and pluggable, each
hardware extension can provide its own hooks to ppb, and you can
nearly seamlessly switch between various Python libraries.

Fun

One of the maintainers put it best:

If it’s not fun to use, we should redo it

ppb is about filing off the rough edges so that the joy of creation and
discovery are both emphasized. A new user should be able to build their
first game in a few hours, and continue exploring beyond that.

Contents:

	Getting Started
	Prerequisites

	Installing ppb

	A Basic Game

	Taking Control

	Reaching Out

	Something to Target

	Tutorials

	How To: The ppb Cookbook

	API Reference
	Starting Your Game

	Events

	Clocks

	Assets

	All About Scenes

	All About Sprites

	GameEngine

	Sound Effects

	Features

	Discussion
	Principles and Values

	The Asset System

Getting Started

This guide will start by getting you a fresh virtual environment and installing
ppb. It will then walk you through building a basic game that will look a lot like our
sample game targets.py.

Prerequisites

Before you get started here, you should know the basics of Python. We use
classes extensively in ppb, and you should be comfortable with them. Consider
the Python.org tutorial [https://docs.python.org/3/tutorial/index.html] or
automate the boring stuff [http://automatetheboringstuff.com/] to get started.

Additionally, you need to have Python 3.6 or later on your machine. You can
install this via Python.org [https://www.python.org/downloads/] or
Anaconda [https://www.anaconda.com/python-3-7-package-build-out-miniconda-release/]
whichever is more comfortable for you.

Installing ppb

Once you have a working Python install, you’re going to want to make a new
folder. Open your shell (Terminal on Mac, CMD or Powershell on Windows, your
favorite tool on Linux) and run:

All Systems:

mkdir -p path/to/my_game
cd path/to/my_game

path/to/my_game can be any path you’d like, and the name can be anything you’d like.
We cd into it so we have a place to work.

The next step we’re going to do is set up a virtual environment. Python 3.6
comes with a tool to create them, so in your terminal again:

All Systems:

python3 -m venv .venv

This creates a new python environment that we’ll use to make our game.
To make the next few steps easier, we’ll want to activate our virtual
environment. This is different on Windows than anywhere else, so make sure to
use the right command.

Windows:

.venv/bin/activate.bat

Linux and Mac:

source .venv/bin/activate

After you’ve done this, your shell prompt should include (.venv). We’re
ready for installing ppb:

All Systems:

pip install ppb

Additionally, on Linux only you must install the SDL library:

Debian, Ubuntu:

sudo apt install libsdl2-2.0-0 libsdl2-mixer-2.0-0 libsdl2-image-2.0-0 libsdl2-gfx-1.0-0

You should see a few libraries get put together in your terminal, and when
you have a prompt again, we’re ready to go!

A Basic Game

The next step is to make a new file. If you’re using an IDE, open your game
folder in that and make a new file called main.py. If you’re using a plain
text editor, you’ll want to open a new file and save it as main.py.

Note: main.py is just being used as a convention and this file can be
named anything. If you change the name you’ll want to use the new name in
further commands.

In your code file, add this:

main.py:

import ppb

ppb.run()

Save your file, then run it from your shell:

All Systems:

python main.py

You should have a window! It will be 800 pixels wide and 600 pixels tall, and if you click the x
button (or the red dot on MacOS), it should close.

Now let’s add a Sprite. Sprites are game objects that can often move and are
drawn to the screen. Add the following code after your import. Note that
ppb.run has a new parameter.

main.py:

import ppb

class Player(ppb.BaseSprite):
 pass

def setup(scene):
 scene.add(Player())

ppb.run(setup=setup)

When you run this, you should have the same window with a colored square in the
middle.

At this point, if you have a png on your computer, you can move it into your
project folder and call it player.png. Rerun the file to see your character
on screen!

Our sprite is currently static, but let’s change that. Inside your Player
class, we’re going to add a function and some class attributes.

main.py:

class Player(ppb.BaseSprite):
 velocity = ppb.Vector(0, 1)

 def on_update(self, update_event, signal):
 self.position += self.velocity * update_event.time_delta

Now, your sprite should fly up off the screen.

Taking Control

This is cool, but most people expect a game to be something you can interact
with. Let’s use keyboard controls to move our Player around. First things
first, we have some new things we want to import:

main.py:

import ppb
from ppb import keycodes
from ppb.events import KeyPressed, KeyReleased

These are the classes we’ll want in the next section to work.

The next step is we’ll need to redo out Player class. Go ahead and delete
it, and put this in its place:

main.py:

class Player(ppb.BaseSprite):
 position = ppb.Vector(0, -3)
 direction = ppb.Vector(0, 0)
 speed = 4

 def on_update(self, update_event, signal):
 self.position += self.direction * self.speed * update_event.time_delta

This new Player moves a certain distance based on time, and a direction
vector and its own speed. Right now, our direction is not anything (it’s the
zero-vector), but we’ll change that in a moment. For now, go ahead and run the
program a few times, changing the parameters to the direction Vector and
the speed and see what happens. You can also modify position to see where
you like your ship.

Now that you’re comfortable with the base mechanics of our new class, revert
your changes to position, speed, and direction. Then we can wire up
our controls.

First, we’re going to define the four arrow keys as our controls. These can be
set as class variables so we can change them later:

main.py:

class Player(ppb.BaseSprite):
 position = ppb.Vector(0, -3)
 direction = ppb.Vector(0, 0)
 speed = 4
 left = keycodes.Left
 right = keycodes.Right

The keycodes module contains all of the keys on a US based keyboard. If you
want different controls, you can look at the module documentation to find ones
you prefer.

Now, under our on_update function we’re going to add two new event handlers.
The snippet below doesn’t include the class attributes we just defined, but
don’t worry, just add the new methods at the end of the class, beneath your
on_update method.

main.py:

class Player(ppb.BaseSprite):

 def on_key_pressed(self, key_event: KeyPressed, signal):
 if key_event.key == self.left:
 self.direction += ppb.Vector(-1, 0)
 elif key_event.key == self.right:
 self.direction += ppb.Vector(1, 0)

 def on_key_released(self, key_event: KeyReleased, signal):
 if key_event.key == self.left:
 self.direction += ppb.Vector(1, 0)
 elif key_event.key == self.right:
 self.direction += ppb.Vector(-1, 0)

So now, you should be able to move your player back and forth using the arrow
keys.

Reaching Out

The next step will to make our player “shoot”. I use shoot loosely here,
your character can be throwing things, or blowing kisses, or anything, the only
mechanic is we’re going to have a new object start at the player, and fly up.

First, we need a new class. We’ll put it under Player, but above setup.

main.py:

class Projectile(ppb.BaseSprite):
 size = 0.25
 direction = ppb.Vector(0, 1)
 speed = 6

 def on_update(self, update_event, signal):
 if self.direction:
 direction = self.direction.normalize()
 else:
 direction = self.direction
 self.position += direction * self.speed * update_event.time_delta

If we wanted to, we could pull out this on_update function into a mixin that
we could use with either of these classes, but I’m going to leave that as an
exercise to the reader. Just like the player, we can put a square image in the
same folder with the name projectile.png and it’ll get rendered, or we can
let the engine make a colored square for us.

Let’s go back to our player class. We’re going to add a new button to the class
attributes, then update the on_key_pressed method. Just like before, I’ve
removed some code from the sample, you don’t need to delete anything here, just
add the new lines: The class attributes right and projector will go
after the line about speed and the new elif will go inside your
on_key_pressed handler after the previous elif.

main.py:

class Player(ppb.BaseSprite):

 right = keycodes.Right
 projector = keycodes.Space

 def on_key_pressed(self, key_event: KeyPressed, signal):
 if key_event.key == self.left:
 self.direction += ppb.Vector(-1, 0)
 elif key_event.key == self.right:
 self.direction += ppb.Vector(1, 0)
 elif key_event.key == self.projector:
 key_event.scene.add(Projectile(position=self.position + ppb.Vector(0, 0.5)))

Now, when you press the space bar, projectiles appear. They only appear once
each time we press the space bar. Next we need something to hit with
our projectiles!

Something to Target

We’re going to start with the class like we did before. Below your Projectile
class, add

main.py:

class Target(ppb.BaseSprite):

 def on_update(self, update_event, signal):
 for p in update_event.scene.get(kind=Projectile):
 if (p.position - self.position).length <= self.size:
 update_event.scene.remove(self)
 update_event.scene.remove(p)
 break

This code will go through all of the Projectiles available, and if one is inside
the Target, we remove the Target and the Projectile. We do this by
accessing the scene that exists on all events in ppb, and using its get
method to find the projectiles. We also use a simplified circle collision, but
other versions of collision can be more accurate, but left up to your research.

Next, let’s instantiate a few of our targets to test this.

main.py:

def setup(scene):
 scene.add(Player())

 for x in range(-4, 5, 2):
 scene.add(Target(position=ppb.Vector(x, 3)))

Now you can run your file and see what happens. You should be able to move back
and forth near the bottom of the screen, and shoot toward the top, where your
targets will disappear when hit by a bullet.

Congratulations on making your first game.

For next steps, you should explore other tutorials.
Similarly, you can discover new events in the
event documentation.

Tutorials

Tutorials live here, except for the basic Quick Start tutorial.

A tutorial is an complete project that takes you from an empty file to a
working game.

How To: The ppb Cookbook

This section is for direct how tos to solve specific problems with ppb.

API Reference

For as simple as the tutorials make ppb look there’s a lot of power under
the hood. This section will cover the raw what of the ppb API. To find out why
decisions are made, see the discussion section.

Contents:

	Starting Your Game

	Events
	Engine Events

	API Events

	Scene Transition Events

	Clocks
	Updates

	Frames

	Idle

	Assets
	General Asset Interface

	Concrete Assets

	Asset Proxies and Virtual Assets

	All About Scenes

	All About Sprites
	Default Sprite

	Feature Mixins

	Base Classes

	Internals

	GameEngine

	Sound Effects
	Reference

	Features
	Animation

	Two Phase Updates

	Loading Screens

Starting Your Game

There are two major patterns for starting a game

import ppb

def setup(scene):
 ...

ppb.run(setup=setup)

import ppb

class MyScene(ppb.BaseScene):
 ...

ppb.run(starting_scene=MyScene)

Events

All game objects (the engine, scenes, sprites, systems, etc) receive events.
Handlers are methods that start with on_, eg on_update,
on_button_pressed.

The signature of these handlers are the same: (event, signal):

	event: An object containing all the properties of the event, such as the
button pressed, the position of the mouse, the current scene

	signal: A callable that accepts an object, which will be raised as an
event: signal(StartScene(new_scene=OtherScene()))

Engine Events

These are core events from hardware and the engine itself.

	
class ppb.events.Update(time_delta: float, scene: ppb.scenes.BaseScene = None)

	Fired on game tick

	
class ppb.events.PreRender(scene: ppb.scenes.BaseScene = None)

	Fired before rendering.

	
class ppb.events.Idle(time_delta: float, scene: ppb.scenes.BaseScene = None)

	An engine plumbing event to pump timing information to subsystems.

	
class ppb.events.Render(scene: ppb.scenes.BaseScene = None)

	Fired at render.

	
class ppb.events.ButtonPressed(button: ppb.buttons.MouseButton, position: ppb_vector.Vector, scene: ppb.scenes.BaseScene = None)

	Fired when a button is pressed

	
class ppb.events.ButtonReleased(button: ppb.buttons.MouseButton, position: ppb_vector.Vector, scene: ppb.scenes.BaseScene = None)

	Fired when a button is released

	
class ppb.events.KeyPressed(key: ppb.keycodes.KeyCode, mods: Set[ppb.keycodes.KeyCode], scene: ppb.scenes.BaseScene = None)

	

	
class ppb.events.KeyReleased(key: ppb.keycodes.KeyCode, mods: Set[ppb.keycodes.KeyCode], scene: ppb.scenes.BaseScene = None)

	

	
class ppb.events.MouseMotion(position: ppb_vector.Vector, screen_position: ppb_vector.Vector, delta: ppb_vector.Vector, buttons: Collection[ppb.buttons.MouseButton], scene: ppb.scenes.BaseScene = None)

	An event to represent mouse motion.

API Events

These “events” are more for code to call into the engine.

	
class ppb.events.Quit(scene: ppb.scenes.BaseScene = None)

	Fired on an OS Quit event.

You may also fire this event to stop the engine.

	
class ppb.events.StartScene(new_scene: Union[ppb.scenes.BaseScene, Type[ppb.scenes.BaseScene]], kwargs: Dict[str, Any] = None, scene: ppb.scenes.BaseScene = None)

	Fired to start a new scene.

new_scene can be an instance or a class. If a class, must include kwargs.
If new_scene is an instance kwargs should be empty or None.

Before the previous scene pauses, a ScenePaused event will be fired.
Any events signaled in response will be delivered to the new scene.

After the ScenePaused event and any follow up events have been delivered, a
SceneStarted event will be sent.

	Examples:

	
	signal(new_scene=StartScene(MyScene(player=player))

	signal(new_scene=StartScene, kwargs={“player”: player}

	
class ppb.events.ReplaceScene(new_scene: Union[ppb.scenes.BaseScene, Type[ppb.scenes.BaseScene]], kwargs: Dict[str, Any] = None, scene: ppb.scenes.BaseScene = None)

	Fired to replace the current scene with a new one.

new_scene can be an instance or a class. If a class, must include kwargs.
If new_scene is an instance kwargs should be empty or None.

Before the previous scene stops, a SceneStopped event will be fired.
Any events signaled in response will be delivered to the new scene.

After the SceneStopped event and any follow up events have been delivered,
a SceneStarted event will be sent.

	Examples:

	
	signal(new_scene=ReplaceScene(MyScene(player=player))

	signal(new_scene=ReplaceScene, kwargs={“player”: player}

	
class ppb.events.StopScene(scene: ppb.scenes.BaseScene = None)

	Fired to stop a scene.

Before the scene stops, a SceneStopped event will be fired. Any events
signaled in response will be delivered to the previous scene if it exists.

If there is a paused scene on the stack, a SceneContinued event will be
fired after the responses to the SceneStopped event.

	
class ppb.events.PlaySound(sound: ppb.assets.Asset)

	Fire to start a sound playing.

Scene Transition Events

These are events triggered about the lifetime of a scene: it starting, stopping,
etc.

The scene property on these events always refers to the scene these are
about–ScenePaused.scene is the scene that is being paused.

	
class ppb.events.SceneStarted(scene: ppb.scenes.BaseScene = None)

	Fired when a scene starts.

This is delivered to a Scene shortly after it starts. The beginning of the
scene lifetime, ended with SceneStopped, paused with ScenePaused, and
resumed from a pause with SceneContinued.

	
class ppb.events.SceneStopped(scene: ppb.scenes.BaseScene = None)

	Fired when a scene stops.

This is delivered to a scene and it’s objects when a StopScene or
ReplaceScene event is sent to the engine.

The end of the scene lifetime, started with SceneStarted.

	
class ppb.events.ScenePaused(scene: ppb.scenes.BaseScene = None)

	Fired when a scene pauses.

This is delivered to a scene about to be paused when a StartScene event is
sent to the engine. When this scene resumes it will receive a
SceneContinued event.

A middle event in the scene lifetime, started with SceneStarted.

	
class ppb.events.SceneContinued(scene: ppb.scenes.BaseScene = None)

	Fired when a paused scene continues.

This is delivered to a scene as it resumes operation after being paused via
a ScenePaused event.

From the middle of the event lifetime that begins with SceneStarted.

Clocks

PPB has several ways to mark time: fixed-rate updates, frames, and idle time.
These are all exposed via the event system.

Updates

The ppb.events.Update event is fired at a regular, fixed rate
(defaulting to 60 times a second). This is well-suited for simulation updates,
such as motion, running NPC AIs, physics, etc.

Frames

The ppb.events.PreRender and ppb.events.Render are fired
every frame. This is best used for particle systems, animations, and anything
that needs to update every rendered frame (even if the framerate varies).

Note

While both PreRender and
Render are fired every frame, it is
encouraged that games only use PreRender
to ensure proper sequencing. That is, it is not guaranteed when
on_render() methods are called with respect to the actual rendering.

Idle

ppb.events.Idle is fired whenever the core event loop has no more
events. While this is primarily used by systems for various polling things, it
may be useful for games which have low-priority calculations to perform.

Assets

PursuedPyBear features a background, eager-loading asset system. The first time
an asset is referenced, PPB starts reading and parsing it in a background
thread.

The data is kept in memory for the lifetime of the Asset. When
nothing is referencing it any more, the Python garbage collector will clean up
the object and its data.

Asset instances are consolidated or “interned”: if you ask for the
same asset twice, you’ll get the same instance back. Note that this is a
performance optimization and should not be relied upon (do not do things like
asset1 is asset2).

General Asset Interface

All assets inherit from Asset. It handles the background loading
system and the data logistics.

	
class ppb.assetlib.Asset(name)

	A resource to be loaded from the filesystem and used.

Meant to be subclassed, but in specific ways.

	
file_missing()

	Called if the file could not be found, to produce a default value.

Subclasses may want to define this.

Called in the background thread.

	
background_parse(data: bytes)

	Takes the data loaded from the file and returns the parsed data.

Subclasses probably want to override this.

Called in the background thread.

	
free(object)

	Called by __del__() if the data was loaded.

Meant to free any resources held outside of Python.

	
is_loaded()

	Returns if the data has been loaded and parsed.

	
load(timeout: float = None)

	Gets the parsed data.

Will block until the data is loaded.

Subclassing

Asset makes specific assumptions and is only suitable for loading
file-based assets. These make the consolidation, background-loading, and other
aspects of Asset possible.

You should really only implement three methods:

	background_parse(): This is called with the loaded data and returns
an object constructed from that data. This is called from a background thread
and its return value is accessible from load()

This is an excellent place for decompression, data parsing, and other tasks
needed to turn a pile of bytes into a useful data structure.

	file_missing(): This is called if the asset is not found. Defining
this method surpresses load() from raising a
FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] and will instead call this, and
load() will return what this returns.

For example, ppb.Image uses this to produce the default square.

	free(): This is to clean up any resources that would not normally
be cleaned up by Python’s garbage collector. If you are integrating external
libraries, you may need this.

Concrete Assets

While Asset can load anything, it only produces bytes, limiting its
usefulness. Most likely, you want a concrete subclass that does something more
useful.

	
class ppb.Image(name)

	Loads an image file and parses it into a form usable by the renderer.

	
class ppb.Sound(name)

	Loads and decodes an image file. A variety of formats are supported.

Asset Proxies and Virtual Assets

Asset Proxies and Virtual Assets are assets that implement the interface but
either delegate to other Assets or are completely synthesized.

For example, ppb.features.animation.Animation is an asset proxy that
delegates to actual ppb.Image instances.

	
class ppb.assetlib.AbstractAsset

	The asset interface.

This defines the common interface for virtual assets, proxy assets, and
real/file assets.

	
is_loaded()

	Returns if the data is ready now or if load() will block.

	
load()

	Get the data of this asset, in the appropriate form.

	
class ppb.Circle(red: int, green: int, blue: int)

	A circle image of a single color.

	
class ppb.Square(red: int, green: int, blue: int)

	A square image of a single color.

	
class ppb.Triangle(red: int, green: int, blue: int)

	A triangle image of a single color.

All About Scenes

Scenes are the terrain where sprites act. Each game has multiple scenes and may
transition at any time.

	
class ppb.BaseScene(*, set_up: Callable = None, pixel_ratio: numbers.Number = 64, **kwargs)

	
	
background_color = (0, 0, 100)

	An RGB triple of the background, eg (0, 127, 255)

	
main_camera

	An object representing the view of the scene that’s rendered

	
add(game_object: Hashable, tags: Iterable[T_co] = ()) → None

	Add a game_object to the scene.

game_object: Any GameObject object. The item to be added.
tags: An iterable of Hashable objects. Values that can be used to

retrieve a group containing the game_object.

	Examples:

	scene.add(MyGameObject())

scene.add(MyGameObject(), tags=(“red”, “blue”)

	
get(*, kind: Type[CT_co] = None, tag: Hashable = None, **kwargs) → Iterator[T_co]

	Get an iterator of GameObjects by kind or tag.

	kind: Any type. Pass to get a subset of contained GameObjects with the

	given type.

	tag: Any Hashable object. Pass to get a subset of contained GameObjects

	with the given tag.

Pass both kind and tag to get objects that are both that type and that
tag.

	Examples:

	scene.get(type=MyGameObject)

scene.get(tag=”red”)

scene.get(type=MyGameObject, tag=”red”)

	
remove(game_object: Hashable) → None

	Remove the given object from the scene.

game_object: A game object.

	Example:

	scene.remove(my_game_object)

	
sprite_layers() → Iterator[T_co]

	Return an iterator of the contained Sprites in ascending layer
order.

Sprites are part of a layer if they have a layer attribute equal to
that layer value. Sprites without a layer attribute are considered
layer 0.

This function exists primarily to assist the Renderer subsystem,
but will be left public for other creative uses.

All About Sprites

Sprites are game objects.

In ppb all sprites are built from composition via mixins or subclassing via
traditional Python inheritance. Sprite is provided as a default expectation
used in ppb.

If you intend to build your own set of expectation, see BaseSprite.

Default Sprite

This is the class you should instantiate or subclass for your games unless
you are changing the defaults.

	
class ppb.Sprite(**kwargs)

	The default Sprite class.

Sprite includes:

	BaseSprite

	SquareShapeMixin

	RenderableMixin

	RotatableMixin

New in 0.7.0: Use this in place of BaseSprite in your games.

	
bottom

	The bottom side

	
center

	The position of the center of the sprite

	
facing

	The direction the “front” is facing

	
left

	The left side

	
right

	The right side

	
rotate(degrees)

	Rotate the sprite by a given angle (in degrees).

	
rotation

	The amount the sprite is rotated, in degrees

	
top

	The top side

Note that ppb.BaseSprite is deprecated in favor of ppb.Sprite. Scheduled
for removal in ppb v0.8.0.

Feature Mixins

These mixins are the various features already available in Sprite. Here for
complete documentation.

	
class ppb.sprites.RenderableMixin

	A class implementing the API expected by ppb.systems.renderer.Renderer.

You should include RenderableMixin before BaseSprite in your parent
class definitions.

	
image = None

	(ppb.Image): The image asset

	
class ppb.sprites.RotatableMixin

	A simple rotation mixin. Can be included with sprites.

	
basis = Vector(0.0, -1.0)

	The baseline vector, representing the “front” of the sprite

	
facing

	The direction the “front” is facing

	
rotate(degrees)

	Rotate the sprite by a given angle (in degrees).

	
rotation

	The amount the sprite is rotated, in degrees

	
class ppb.sprites.SquareShapeMixin(**kwargs)

	A mixin that applies square shapes to sprites.

You should include SquareShapeMixin before ppb.sprites.BaseSprite in
your parent classes.

	
bottom

	The bottom side

	
center

	The position of the center of the sprite

	
left

	The left side

	
position = None

	Just here for typing and linting purposes. Your sprite should already have a position.

	
right

	The right side

	
size = 1

	The width/height of the sprite (sprites are square)

	
top

	The top side

Base Classes

The base class of Sprite, use this if you need to change the low level
expectations.

	
class ppb.sprites.BaseSprite(**kwargs)

	The base Sprite class. All sprites should inherit from this (directly or
indirectly).

The things that define a BaseSprite:

	A position vector

	A layer

BaseSprite provides an __init__() method that sets attributes
based on kwargs to make rapid prototyping easier.

	
layer = 0

	The layer a sprite exists on.

	
position = Vector(0.0, 0.0)

	(ppb.Vector): Location of the sprite

Internals

These classes are internals for various APIs included with mixins.

	
class ppb.sprites.Side(parent: ppb.sprites.SquareShapeMixin, side: str)

	Acts like a float, but also has a variety of accessors.

	
bottom

	Get the corner vector

	
center

	Get the midpoint vector

	
left

	Get the corner vector

	
right

	Get the corner vector

	
top

	Get the corner vector

GameEngine

The GameEngine is the literal beating heart of ppb: It publishes the
event queue, is the source of the Idle event, and is the
root container of the object tree.

Some of the engine of the API is definitely intended for advanced users. Use
the various methods of GameEngine with caution.

	
class ppb.GameEngine(first_scene: Type[CT_co], *, basic_systems=(<class 'ppb.systems.renderer.Renderer'>, <class 'ppb.systems.clocks.Updater'>, <class 'ppb.systems.inputs.EventPoller'>, <class 'ppb.systems.sound.SoundController'>, <class 'ppb.assetlib.AssetLoadingSystem'>), systems=(), scene_kwargs=None, **kwargs)

	The core component of ppb.

To use the engine directly, treat it as a context manager:

with GameEngine(BaseScene, **kwargs) as ge:
 ge.run()

	Parameters

	
	first_scene (Type) – A BaseScene type.

	basic_systems (Iterable[systemslib.System]) – :class:systemslib.Systems that are considered
the “default”. Includes: Renderer,
Updater, EventPoller,
SoundController, AssetLoadingSystem.

	systems (Iterable[systemslib.System]) – Additional user defined systems.

	scene_kwargs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Keyword arguments passed along to the first scene.

	kwargs – Additional keyword arguments. Passed to the systems.

Warning

Passing in your own basic_systems can have unintended
consequences. Consider passing via systems parameter instead.

	
activate(next_scene: dict)

	Instantiates and sets up a new scene.

	Parameters

	next_scene – A dictionary with the keys:

	”scene_class”: A BaseScene type.

	”args”: A list [https://docs.python.org/3/library/stdtypes.html#list] of positional arguments.

	”kwargs”: A dict [https://docs.python.org/3/library/stdtypes.html#dict] of keyword arguments.

	
current_scene

	The top of the scene stack.

	Returns

	The currently running scene.

	Return type

	ppb.BaseScene

	
loop_once()

	Iterate once.

If you’re embedding ppb in an external event loop call once per
loop.

	
main_loop()

	Loop forever.

If you’re embedding ppb in an external event loop you should not
use this method. Call GameEngine.loop_once() instead.

	
on_quit(quit_event: ppb.events.Quit, signal: Callable[[Any], None])

	Shut down the event loop.

Do not call this method directly. It is called by the GameEngine when a
Quit event is fired.

	
on_replace_scene(event: ppb.events.ReplaceScene, signal)

	Replace the running scene with a new one.

Do not call this method directly. It is called by the GameEngine when a
ReplaceScene event is fired.

	
on_start_scene(event: ppb.events.StartScene, signal: Callable[[Any], None])

	Start a new scene. The current scene pauses.

Do not call this method directly. It is called by the GameEngine when a
StartScene event is fired.

	
on_stop_scene(event: ppb.events.StopScene, signal: Callable[[Any], None])

	Stop a running scene. If there’s a scene on the stack, it resumes.

Do not call this method directly. It is called by the GameEngine when a
StopScene event is fired.

	
publish()

	Publish the next event to every object in the tree.

	
register(event_type: Union[Type[CT_co], ellipsis], callback: Callable[[], Any])

	Register a callback to be applied to an event at time of publishing.

Primarily to be used by subsystems.

The callback will receive the event. Your code should modify the event
in place. It does not need to return it.

	Parameters

	
	event_type – The class of an event.

	callback – A callable, must accept an event, and return no value.

	Returns

	None

	
run()

	Begin the main loop.

If you have not entered the GameEngine, this function will
enter it for you before starting.

Example:

GameEngine(BaseScene, **kwargs).run()

	
signal(event)

	Add an event to the event queue.

Thread-safe.

You will rarely call this directly from a GameEngine instance.
The current GameEngine instance will pass it’s signal method
as part of publishing an event.

	
start()

	Starts the engine.

Called by GameEngine.run() before GameEngine.main_loop().

You shouldn’t call this yourself unless you’re embedding ppb in
another event loop.

	
start_systems()

	Initialize and enter the systems.

	
walk()

	Walk the object tree.

Publication order: The GameEngine, the
System list, the current
BaseScene, then finally the Sprite objects
in the current scene.

Sound Effects

Sound effects can be triggered by sending an event:

def on_button_pressed(self, event, signal):
 signal(PlaySound(sound=ppb.Sound('toot.ogg')))

The following sound formats are supported:

	OGG [https://en.wikipedia.org/wiki/Ogg] (with both Vorbis [https://en.wikipedia.org/wiki/Vorbis] and Opus [https://en.wikipedia.org/wiki/Opus_(audio_format)])

	FLAC [https://en.wikipedia.org/wiki/FLAC]

	MP3 [https://en.wikipedia.org/wiki/MP3]

	WAV [https://en.wikipedia.org/wiki/WAV]

	AIFF [https://en.wikipedia.org/wiki/Audio_Interchange_File_Format]

	MOD [https://en.wikipedia.org/wiki/MOD_(file_format)]

	VOC

Additionally, MIDI may be supported.

Note

As is usual with assets, you should instantiate your ppb.Sound
as soon as possible, such as at the class level.

Reference

	
class ppb.events.PlaySound(sound: ppb.assets.Asset)

	Fire to start a sound playing.

	
class ppb.Sound(name)

	The asset to use for sounds. A variety of file formats are supported.

Features

Features are additional libraries included with PursuedPyBear. They are not
“core” in the sense that you can not write them youself, but they are useful
tools to have when making games.

Included Features

	Animation
	Pausing

	Reference

	Two Phase Updates

	Loading Screens

Animation

This is a simple animation tool, allowing individual frame files to be composed
into a sprite animation, like so:

import ppb
from ppb.features.animation import Animation

class MySprite(ppb.BaseSprite):
 image = Animation("sprite_{1..10}.png", 4)

Multi-frame files, like GIF or APNG, are not supported.

Pausing

Animations support being paused and unpaused. In addition, there is a “pause
level”, where multiple calls to pause() cause the animation to become
“more paused”. This is useful for eg, pausing on both scene pause and effect.

import ppb
from ppb.features.animation import Animation

class MySprite(ppb.BaseSprite):
 image = Animation("sprite_{1..10}.png", 4)

 def on_scene_paused(self, event, signal):
 self.image.pause()

 def on_scene_continued(self, event, signal):
 self.image.unpause()

 def set_status(self, frozen):
 if frozen:
 self.image.pause()
 else:
 self.image.unpause()

Reference

	
class ppb.features.animation.Animation(filename, frames_per_second)

	An “image” that actually rotates through numbered files at the specified rate.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path containing a {2..4} indicating the frame number

	frames_per_second (number) – The number of frames to show each second

	
__init__(filename, frames_per_second)

	
	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path containing a {2..4} indicating the frame number

	frames_per_second (number) – The number of frames to show each second

	
copy()

	Create a new Animation with the same filename and framerate. Pause
status and starting time are reset.

	
current_frame

	Compute the number of the current frame (0-indexed)

	
load()

	Get the current frame path.

	
pause()

	Pause the animation.

	
unpause()

	Unpause the animation.

Two Phase Updates

A system for two phase updates: Update, and Commit.

	
class ppb.features.twophase.Commit

	Fired after Update.

	
class ppb.features.twophase.TwoPhaseMixin

	Mixin to apply to objects to handle two phase updates.

	
on_commit(event, signal)

	Commit changes previously staged.

	
stage_changes(**kwargs)

	Stage changes for the next commit.

These are just properties on the current object to update.

	
class ppb.features.twophase.TwoPhaseSystem(**_)

	Produces the Commit event.

Loading Screens

The loadingscene feature provides base classes for loading screens.
BaseLoadingScene and its children all work by listening to the asset
system and when all known assets are loaded, continuing on.

	
class ppb.features.loadingscene.BaseLoadingScene(**kwargs)

	Handles the basics of a loading screen.

	
get_progress_sprites()

	Initialize the sprites in the scene, yielding the ones that should be
tagged with progress.

Override me.

	
next_scene = None

	The scene to transition to when loading is complete. May be a type or an instance.

	
update_progress(progress)

	Updates the scene with the load progress (0->1).

Override me.

	
class ppb.features.loadingscene.ProgressBarLoadingScene(**kwargs)

	Assumes that a simple left-to-right progress bar composed of individual
sprites is used.

Users should still override get_progress_sprites().

	
loaded_image = None

	Image to use for sprites in the “loaded” state (left side)

	
unloaded_image = <ppb.flags.DoNotRender object>

	Image to use for sprites in the “unloaded” state (right side)

	
update_progress(progress)

	Looks for sprites tagged progress and sets them to “loaded” or
“unloaded” based on the progress.

The “progress bar” is assumed to be horizontal going from left to right.

Discussion

Discussion is a place to talk about the history and why of specific parts of
ppb. These items can be heavily technical so primarily intended for
advanced users.

Contents:

	Principles and Values
	Students and Learners First

	Creativity without Limits

	Fun

	Radical Acceptance

	The Asset System
	Concepts

	Implementation

	Usage

Principles and Values

PursuedPyBear is a principles driven project. From its earliest days, it’s been
guided by a set of ideals that suggest the shape and form of any problem we
encounter. From our primary focus on students and learners to our embracing
change of the code and our principles.

We have identified four principles as the root of all the others:

Students and Learners First

Our first commitment is to the new programmers and game makers who have made
ppb their tool of choice. Whether introduced to them by a teacher or
discovered on their own, we care about their experiences primarily. However, we
won’t forget educators, professional developers, or hobbyists while doing so.
Our success is most easily measured by the diversity of our community, and that
requires a focus on the early stages of use.

Creativity without Limits

The only limitation we accept is the limitations that come from the platform
we’ve chosen: that being that the only limitation to what you can apply with
ppb is what the developer is capable of what Python is capable of.

This is why we consider being a code first engine so critical to our design.
It’s one of many reasons we build with Python first.

Fun

We believe tools that are a joy to use are more likely to be picked up for the
long term. Being fun means more than just joyful discovery. We care that
complexity is neatly hidden until it’s necessary to be addressed. We want to
reduce “warts” in the API, increase overall discoverability, and allow you to
work playfully.

Radical Acceptance

Over time, the needs of ppb as a project and as a community have changed. It
started as a solo project to encourage reuse of common patterns in one
developer’s workflows. It’s now an education-focused community with a team of
active developers and a couple dozen contributors. As the needs shift, so too
do our principles and processes.

By being willing to do hard work and experiment with improvements in code, we’ve
been able to build better software. ppb has seen three major architectures
since it started. And this document replaces a previous version of our
principles. Those principles were:

	Education Friendly

	Idiomatic Python

	Object Oriented and Event Driven

	Hardware Library Agnostic

	Fun

You’ll notice that some of them are still with us in this document. Others
you’ll find in the child documents of each of the ones explored here. Some are
less principles and more design decisions.

In general, we are always willing to field the idea of “maybe we should do it
this way?” Those questions, even when the answer is no, keep us thinking about
how things are and how they could be.

Ultimately, ppb is aspirational as a project, and our principles reflect
that.

Our Values

	Student First
	Progressive Revealing of Complexity

	No Apologies

	Creativity Without Limits
	Code First

	No Early Optimization

	Support All Users

	Fun
	Delightful to Use

	Encourage Playful Experimentation

	Community Focused

	Radical Acceptance
	Accept Significant Change

	Inclusion

	Be Willing To Try

Student First

PursuedPyBear is, above all other usages, a tool for learning. We continually
find ways to reduce the amount of previous knowledge is required to get to your
first functioning video game. The greatest example of this is the evolution of
ppb start up throughout time:

Originally, ppb was a strict MVC framework with required dependency injection
and little concept of sensible defaults. You had to know what each part of the
system was, instantiate it, and then pass it to the next component.

We kept the dependency injection but rebuilt the engine to have strong opinions
and defaults at every level of the system. However, you had to know what a
context manager was, and how to use one.

Today, we can make a functional game in 15 lines of code, and you never need to
see the underlying context manager.

Progressive Revealing of Complexity

We want to encourage exploration and flexibility of the underlying tool, and one
of the ways we achieve this is through only revealing the complexity of the tool
at the point you must understand it to do something. Our “Hello World!” example
requires only understanding how to invoke functions and how to write your own:
the fundamental building blocks of Python programming. In the next hour of
exploration, it’s possible to learn what objects are, how classes are defined
and using them yourself. And from there, you can begin to learn more complex
features of Python.

Whenever possible, we prefer to provide powerful and sensible defaults, but with
as many options for advanced users as possible.

No Apologies

Every language and tool ends up with a number of quirks known as “wats”. In
ppb we tend to call them “warts”: they’re places where the knowledge you
have of how a system works is thrown a curve ball that requires reassessing what
you know. There are popular wat talks for both Python and Javascript to get a
feel for what we mean.

One way this bears out is that no matter what level your knowledge of ppb,
learning something new should only add to that knowledge, not require
reassessment.

We also try to reduce the number of times a user is forced to ask “why is it
like this and not like that?” Things that are like messages should use the event
queue. State should be contained by objects at the right level of abstraction.
Things should fit the model.

Creativity Without Limits

Our focus on creativity without limits is about supporting users at all
skill levels, and to help guide them from their first lines of code through
contributing to open source.

From a game perspective, we don’t want to discourage any genre of game
against any other. We don’t want to discourage any given scale.

That isn’t to mean we don’t have some limitations: ppb is a 2d
sprite-based engine, it’s built in Python, and it is code first.

Code First

The primary reason we want ppb to be code first is because it allows the
primary long term limitations set on users is the limitations of the Python
language itself.

Code first also means that learning ppb means learning patterns that can be
applied to other kinds of software. A student who learns with ppb
shouldn’t need to ask “what comes next”, the answer should apparent:
Whatever the next project is that interests them.

No Early Optimization

This is one of those general rules of software development, but it’s
something that creates limitations. If we over optimize our toolset for one
genre of video game, it adds friction to others. New features should be
generally applicable or explicitly optional.

The primary example of this is in the basic setup for ppb as a simple event loop
with the update pattern at its core. This is because it’s the most generally
applicable pattern we have available. We provide a multi-phase update system in
features for games that need the ability to stage updates instead of
immediately shifting the state.

Support All Users

We’re Students First, but students aren’t students forever, and we want
ppb to grow with them. From their first tutorials through to their first
shipped video game, and hopefully: to their first open source contribution.
This is about making sure the resources and community are there to help
develop ppb users.

From the user perspective, clear tutorials and example code. Open
discussions about the design of the system. Type hinting to allow the tools to
help guide. Progressive revelation of complexity. All of this is meant to guide
a user from student to pro.

Once they’re ready to contribute we care about well defined processes and
guidelines. A strong description of how documentation is laid out. Where
code lives and why.

Fun

This one is fairly self evident: Playing games is fun. Making games should be
fun. And doing both with friends is better.

Delightful to Use

One of the core ideas that embedded early in the project is that if some piece of
ppb wasn’t fun to use, we should redo it. Our goal with ppb is a genuinely
delightful API. Much of this comes from reducing friction in use, but once
in a while it’s about making a change aimed at giving more expressive
constructions.

One of the changes that we did that demonstrates this is making class
attributes the default way to initialize state. Combined with a powerful
__init__ it has made rapid prototyping faster and more fun for end users.

Encourage Playful Experimentation

This principle draws from many places: Our student focus, our focus on a
delightful interface, and the observation that people learn through play. As
such we have spent a lot of focus on the first few hours of game development.
From our five minute live demos and various tutorials that are ripe for
experimentation we want testing ideas to be painless and recovering from a
misstep to be as inexpensive as possible.

Community Focused

While ppb started as a solo project, it’s growth has been built on
community. Decisions are made through discussion and offering ideas is rarely
discouraged.

Beyond the development of the project, one of our long term focuses is game
distribution. Part of the fun of making the small games ppb excel at is
sharing them with others.

Radical Acceptance

While we do think the greater idea of radical acceptance is important, with
regard to ppb, radical acceptance is about inclusion, experimentation, and
willingness to question our assumptions.

Accept Significant Change

We don’t want to be afraid of change. PursuedPyBear is a project about the API,
and how humans interact with computers changes over times. We shouldn’t be
afraid to abandon API decisions if they stop proving useful.

The “back end” of ppb has changed significantly on four ocassions so far,
changing when some limitation was reached. Originally strictly powered by
dependency injection, we learned that sensible defaults are incredibly
important. That shifted to a single monolithic API that ran all code directly
in line. Then we peeled out the first few subsystems. They were still called
directly, but you could work on them separately from the engine itself. Then we
moved to the Idle event and messaging as the way to interact between
subsystems and the engine itself. In time, even this pattern may prove limiting
and be changed.

Inclusion

PursuedPyBear started as the solo project of a trans woman with a non-standard
education background. As it’s grown, we have sought out and encouraged
contributors from diverse backgrounds. We have a
code of conduct [https://ppb.dev/coc.html] that covers all participation in
the project.

We like being a diverse project, and we will protect the environment that let’s
it be that way.

Education

While we are a tool for education, we acknowledge that not all learners learn
the same way. The author was home schooled and self taught software after
college. Many of the teachers who advise the project come from more traditional
education backgrounds.

We seek to support learners no matter their education path.

Race

Similar to education, race should not be an obstacle to using or contributing to
ppb. The maintainers recognize that while that might be a thing we can
obtain in the project, society is racist and we must work to be anti-racist in
how we manage the project and community.

Gender

The current team of maintainers are all trans feminine. We seek out women and
gender minorities to contribute to the project. We embrace all genders and hope
to keep ppb the kind of community where it is safe to be who you are.

Be Willing To Try

When someone is willing to do the work for an idea the rest of the team isn’t
sure about, let them take a chance at it. Usage will tell us if the solution is
appropriate, not our personal biases.

The Asset System

The asset system (ppb.assetlib) is probably one of the more involved parts of the PPB engine, most likely because it is one of the very few places where multithreading takes place.

It was made to help give a handle on the problems surrounding loading data into games and the management of said data.

To that end, we had several goals when we built the asset system:

	Allow declaring resources at a fairly abstract level

	Optimistically load resources in the background as soon as possible

	Provide a layer of abstraction between how data is loaded and the use of that data

As part of this, we also built the VFS library (ppb.vfs), which treats the Python module import system as a filesystem and allows loading data from it, to make it clear where and how resource files should be added to a project, and provide all the flexibility of the Python module system.

Concepts

Out of this, we define a few high-level concepts:

	Asset: Some kind of way data is loaded & parsed. Usually the result is some internal engine data type.

	Real or File Asset: Loads data from the VFS (such as ppb.Image)

	Virtual Asset: Synthesizes data from nothing (such as ppb.assets.Circle)

	Proxy Asset: Wraps other asset types (such as ppb.features.animation.Animation)

The idea is that the place where the asset is used does not care what kind of asset is used, only that it produces the right kind of data–nothing in the world can make the renderer accept a ppb.Sound.

Implementation

So how did we do this?

A lot of the heavy lifting is provided by the concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures] package from the standard library. On top of this, AssetLoadingSystem and Asset cooperate to implement background file reading. After the data is read, it is handed to the instance and processed into its final form.

Effort is taken to deduplicate assets: If two places refer to the same asset, it is normalized to the same instance. This reduces both load times and memory usage.

A minor wrinkle in this is that assets are defined before the engine starts. The asset system does not actually begin loading data until the engine and AssetLoadingSystem are initialized. This means that there’s no problems delivering events and asset implementations know that initialization has happened.

Usage

None of this explains how you use the asset system for yourself.

Defining Assets

First of all, you have to define for yourself what kind of data the asset will produce. This is usually some kind of data object to be consumed.

Then, you make an Asset subclass. There’s a few methods of note for overriding:

	Asset.background_parse(): Do the actual parsing. Accepts the bytes loaded from the file, and returns the data object that the asset is wrapping.

	Asset.file_missing(): If defined, this will be called if the file is not found, and is expected to return a synthesized stand-in object. If not defined, Asset.load() will raise an error.

	Asset.free(): Handles cleanup in the case where resources need to be explicitly cleaned. Note that because this is called in the context of __del__() [https://docs.python.org/3/reference/datamodel.html#object.__del__], care must be taken around refering to globals or other modules.

At the point of use, all you need to do is call Asset.load() and you will get the object created by the asset. This will block if the background processing is incomplete.

Proxy Assets

Proxy assets are simply assets that wrap other, more concrete assets. One example of this is ppb.features.animation, where Animation wraps multiple Image instances.

Writing your own proxy asset just means returning the results of your inner asset’s load() from your own.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 ppb	

 	
 	
 ppb.features.animation	

 	
 	
 ppb.features.loadingscene	

 	
 	
 ppb.features.twophase	

 	
 	
 ppb.sprites	

Index

 _
 | A
 | B
 | C
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (ppb.features.animation.Animation method)

A

 	
 	AbstractAsset (class in ppb.assetlib)

 	activate() (ppb.GameEngine method)

 	
 	add() (ppb.BaseScene method)

 	Animation (class in ppb.features.animation)

 	Asset (class in ppb.assetlib)

B

 	
 	background_color (ppb.BaseScene attribute)

 	background_parse() (ppb.assetlib.Asset method)

 	BaseLoadingScene (class in ppb.features.loadingscene)

 	BaseScene (class in ppb)

 	BaseSprite (class in ppb.sprites)

 	
 	basis (ppb.sprites.RotatableMixin attribute)

 	bottom (ppb.Sprite attribute)

 	(ppb.sprites.Side attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	ButtonPressed (class in ppb.events)

 	ButtonReleased (class in ppb.events)

C

 	
 	center (ppb.Sprite attribute)

 	(ppb.sprites.Side attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	Circle (class in ppb)

 	
 	Commit (class in ppb.features.twophase)

 	copy() (ppb.features.animation.Animation method)

 	current_frame (ppb.features.animation.Animation attribute)

 	current_scene (ppb.GameEngine attribute)

F

 	
 	facing (ppb.Sprite attribute)

 	(ppb.sprites.RotatableMixin attribute)

 	
 	file_missing() (ppb.assetlib.Asset method)

 	free() (ppb.assetlib.Asset method)

G

 	
 	GameEngine (class in ppb)

 	
 	get() (ppb.BaseScene method)

 	get_progress_sprites() (ppb.features.loadingscene.BaseLoadingScene method)

I

 	
 	Idle (class in ppb.events)

 	Image (class in ppb)

 	
 	image (ppb.sprites.RenderableMixin attribute)

 	is_loaded() (ppb.assetlib.AbstractAsset method)

 	(ppb.assetlib.Asset method)

K

 	
 	KeyPressed (class in ppb.events)

 	
 	KeyReleased (class in ppb.events)

L

 	
 	layer (ppb.sprites.BaseSprite attribute)

 	left (ppb.Sprite attribute)

 	(ppb.sprites.Side attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	
 	load() (ppb.assetlib.AbstractAsset method)

 	(ppb.assetlib.Asset method)

 	(ppb.features.animation.Animation method)

 	loaded_image (ppb.features.loadingscene.ProgressBarLoadingScene attribute)

 	loop_once() (ppb.GameEngine method)

M

 	
 	main_camera (ppb.BaseScene attribute)

 	
 	main_loop() (ppb.GameEngine method)

 	MouseMotion (class in ppb.events)

N

 	
 	next_scene (ppb.features.loadingscene.BaseLoadingScene attribute)

O

 	
 	on_commit() (ppb.features.twophase.TwoPhaseMixin method)

 	on_quit() (ppb.GameEngine method)

 	
 	on_replace_scene() (ppb.GameEngine method)

 	on_start_scene() (ppb.GameEngine method)

 	on_stop_scene() (ppb.GameEngine method)

P

 	
 	pause() (ppb.features.animation.Animation method)

 	PlaySound (class in ppb.events), [1]

 	position (ppb.sprites.BaseSprite attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	ppb.features.animation (module)

 	
 	ppb.features.loadingscene (module)

 	ppb.features.twophase (module)

 	ppb.sprites (module)

 	PreRender (class in ppb.events)

 	ProgressBarLoadingScene (class in ppb.features.loadingscene)

 	publish() (ppb.GameEngine method)

Q

 	
 	Quit (class in ppb.events)

R

 	
 	register() (ppb.GameEngine method)

 	remove() (ppb.BaseScene method)

 	Render (class in ppb.events)

 	RenderableMixin (class in ppb.sprites)

 	ReplaceScene (class in ppb.events)

 	right (ppb.Sprite attribute)

 	(ppb.sprites.Side attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	
 	RotatableMixin (class in ppb.sprites)

 	rotate() (ppb.Sprite method)

 	(ppb.sprites.RotatableMixin method)

 	rotation (ppb.Sprite attribute)

 	(ppb.sprites.RotatableMixin attribute)

 	run() (ppb.GameEngine method)

S

 	
 	SceneContinued (class in ppb.events)

 	ScenePaused (class in ppb.events)

 	SceneStarted (class in ppb.events)

 	SceneStopped (class in ppb.events)

 	Side (class in ppb.sprites)

 	signal() (ppb.GameEngine method)

 	size (ppb.sprites.SquareShapeMixin attribute)

 	Sound (class in ppb)

 	
 	Sprite (class in ppb)

 	sprite_layers() (ppb.BaseScene method)

 	Square (class in ppb)

 	SquareShapeMixin (class in ppb.sprites)

 	stage_changes() (ppb.features.twophase.TwoPhaseMixin method)

 	start() (ppb.GameEngine method)

 	start_systems() (ppb.GameEngine method)

 	StartScene (class in ppb.events)

 	StopScene (class in ppb.events)

T

 	
 	top (ppb.Sprite attribute)

 	(ppb.sprites.Side attribute)

 	(ppb.sprites.SquareShapeMixin attribute)

 	
 	Triangle (class in ppb)

 	TwoPhaseMixin (class in ppb.features.twophase)

 	TwoPhaseSystem (class in ppb.features.twophase)

U

 	
 	unloaded_image (ppb.features.loadingscene.ProgressBarLoadingScene attribute)

 	unpause() (ppb.features.animation.Animation method)

 	
 	Update (class in ppb.events)

 	update_progress() (ppb.features.loadingscene.BaseLoadingScene method)

 	(ppb.features.loadingscene.ProgressBarLoadingScene method)

W

 	
 	walk() (ppb.GameEngine method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to PursuedPyBear’s documentation!

 		
 Getting Started

 		
 Prerequisites

 		
 Installing ppb

 		
 A Basic Game

 		
 Taking Control

 		
 Reaching Out

 		
 Something to Target

 		
 Tutorials

 		
 How To: The ppb Cookbook

 		
 API Reference

 		
 Starting Your Game

 		
 Events

 		
 Engine Events

 		
 API Events

 		
 Scene Transition Events

 		
 Clocks

 		
 Updates

 		
 Frames

 		
 Idle

 		
 Assets

 		
 General Asset Interface

 		
 Concrete Assets

 		
 Asset Proxies and Virtual Assets

 		
 All About Scenes

 		
 All About Sprites

 		
 Default Sprite

 		
 Feature Mixins

 		
 Base Classes

 		
 Internals

 		
 GameEngine

 		
 Sound Effects

 		
 Reference

 		
 Features

 		
 Animation

 		
 Two Phase Updates

 		
 Loading Screens

 		
 Discussion

 		
 Principles and Values

 		
 Students and Learners First

 		
 Creativity without Limits

 		
 Fun

 		
 Radical Acceptance

 		
 The Asset System

 		
 Concepts

 		
 Implementation

 		
 Usage

_static/ajax-loader.gif

